Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Radiology ; 310(2): e230777, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38349246

RESUMEN

Published in 2021, the fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS) introduced new molecular criteria for tumor types that commonly occur in either pediatric or adult age groups. Adolescents and young adults (AYAs) are at the intersection of adult and pediatric care, and both pediatric-type and adult-type CNS tumors occur at that age. Mortality rates for AYAs with CNS tumors have increased by 0.6% per year for males and 1% per year for females from 2007 to 2016. To best serve patients, it is crucial that both pediatric and adult radiologists who interpret neuroimages are familiar with the various pediatric- and adult-type brain tumors and their typical imaging morphologic characteristics. Gliomas account for approximately 80% of all malignant CNS tumors in the AYA age group, with the most common types observed being diffuse astrocytic and glioneuronal tumors. Ependymomas and medulloblastomas also occur in the AYA population but are seen less frequently. Importantly, biologic behavior and progression of distinct molecular subgroups of brain tumors differ across ages. This review discusses newly added or revised gliomas in the fifth edition of the CNS WHO classification, as well as other CNS tumor types common in the AYA population.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Glioma , Meduloblastoma , Femenino , Masculino , Humanos , Adolescente , Adulto Joven , Niño , Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Organización Mundial de la Salud
2.
J Neurosurg Pediatr ; 33(4): 367-373, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38241689

RESUMEN

OBJECTIVE: Extent of resection (EOR) is the most important modifiable prognostic variable for pediatric patients with posterior fossa ependymoma. An understanding of primary and recurrent ependymoma complications is essential to inform clinical decision-making for providers, patients, and families. In this study, the authors characterize postsurgical complications following resection of primary and recurrent pediatric posterior fossa ependymoma in a molecularly defined cohort. METHODS: The authors conducted a 20-year retrospective single-center review of pediatric patients undergoing resection of posterior fossa ependymoma at the Hospital for Sick Children in Toronto, Canada. Complications were dichotomized into major and minor groups; EOR was compared across complication categories. The association between complication occurrence with length of stay (LOS) and mortality was also assessed using multivariable regressions. RESULTS: There were 60 patients with primary resection included, 41 (68%) of whom were alive at the time of data collection. Gross-total resection was achieved in 33 (58%) of 57 patients at primary resection. There were no 30-day mortality events following primary and recurrent ependymoma resection. Following primary resection, 6 patients (10%) had posterior fossa syndrome (PFS) and 36 (60%) developed cranial neuropathies, 56% of which recovered within 1 year. One patient (1.7%) required a tracheostomy and 9 patients (15%) required gastrostomy tubes. There were 14 ventriculoperitoneal shunts (23%) inserted for postoperative hydrocephalus. Among recurrent cases, there were 48 recurrent resections performed in 24 patients. Complications included new cranial neuropathy in 10 patients (21%), of which 5 neuropathies resolved within 1 year. There were no cases of PFS following resection of recurrent ependymoma. Gastrostomy tube insertion was required in 3 patients (6.3%), and 1 patient (2.0%) required a tracheostomy. Given the differences in the location of tumor recurrence, a direct comparison between primary and recurrent resection complications was not feasible. Following multivariate analysis adjusting for sex, age, molecular status, and EOR, occurrence of major complications was found to be associated with prolonged LOS but not mortality. CONCLUSIONS: These results detail the spectrum of postsurgical morbidity following primary and recurrent posterior fossa ependymoma resection. The crude complication rate following resection of infratentorial recurrent ependymoma was lower than that of primary ependymoma, although a statistical comparison revealed no significant differences between the groups. These results should serve to inform providers of the morbidity profile following surgical management of posterior fossa ependymoma and inform perioperative counseling of patients and their families.


Asunto(s)
Neoplasias Encefálicas , Ependimoma , Hidrocefalia , Neoplasias Infratentoriales , Niño , Humanos , Neoplasias Infratentoriales/cirugía , Neoplasias Infratentoriales/complicaciones , Estudios Retrospectivos , Neoplasias Encefálicas/complicaciones , Hidrocefalia/cirugía , Ependimoma/cirugía , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/cirugía
3.
Eur Radiol ; 34(4): 2772-2781, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37803212

RESUMEN

OBJECTIVES: Currently, the BRAF status of pediatric low-grade glioma (pLGG) patients is determined through a biopsy. We established a nomogram to predict BRAF status non-invasively using clinical and radiomic factors. Additionally, we assessed an advanced thresholding method to provide only high-confidence predictions for the molecular subtype. Finally, we tested whether radiomic features provide additional predictive information for this classification task, beyond that which is embedded in the location of the tumor. METHODS: Random forest (RF) models were trained on radiomic and clinical features both separately and together, to evaluate the utility of each feature set. Instead of using the traditional single threshold technique to convert the model outputs to class predictions, we implemented a double threshold mechanism that accounted for uncertainty. Additionally, a linear model was trained and depicted graphically as a nomogram. RESULTS: The combined RF (AUC: 0.925) outperformed the RFs trained on radiomic (AUC: 0.863) or clinical (AUC: 0.889) features alone. The linear model had a comparable AUC (0.916), despite its lower complexity. Traditional thresholding produced an accuracy of 84.5%, while the double threshold approach yielded 92.2% accuracy on the 80.7% of patients with the highest confidence predictions. CONCLUSION: Models that included radiomic features outperformed, underscoring their importance for the prediction of BRAF status. A linear model performed similarly to RF but with the added benefit that it can be visualized as a nomogram, improving the explainability of the model. The double threshold technique was able to identify uncertain predictions, enhancing the clinical utility of the model. CLINICAL RELEVANCE STATEMENT: Radiomic features and tumor location are both predictive of BRAF status in pLGG patients. We show that they contain complementary information and depict the optimal model as a nomogram, which can be used as a non-invasive alternative to biopsy. KEY POINTS: • Radiomic features provide additional predictive information for the determination of the molecular subtype of pediatric low-grade gliomas patients, beyond what is embedded in the location of the tumor, which has an established relationship with genetic status. • An advanced thresholding method can help to distinguish cases where machine learning models have a high chance of being (in)correct, improving the utility of these models. • A simple linear model performs similarly to a more powerful random forest model at classifying the molecular subtype of pediatric low-grade gliomas but has the added benefit that it can be converted into a nomogram, which may facilitate clinical implementation by improving the explainability of the model.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Niño , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Encefálicas/patología , Radiómica , Estudios Retrospectivos , Glioma/patología
4.
Cancer Discov ; 14(2): 258-273, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37823831

RESUMEN

Immune checkpoint inhibition (ICI) is effective for replication-repair-deficient, high-grade gliomas (RRD-HGG). The clinical/biological impact of immune-directed approaches after failing ICI monotherapy is unknown. We performed an international study on 75 patients treated with anti-PD-1; 20 are progression free (median follow-up, 3.7 years). After second progression/recurrence (n = 55), continuing ICI-based salvage prolonged survival to 11.6 months (n = 38; P < 0.001), particularly for those with extreme mutation burden (P = 0.03). Delayed, sustained responses were observed, associated with changes in mutational spectra and the immune microenvironment. Response to reirradiation was explained by an absence of deleterious postradiation indel signatures (ID8). CTLA4 expression increased over time, and subsequent CTLA4 inhibition resulted in response/stable disease in 75%. RAS-MAPK-pathway inhibition led to the reinvigoration of peripheral immune and radiologic responses. Local (flare) and systemic immune adverse events were frequent (biallelic mismatch-repair deficiency > Lynch syndrome). We provide a mechanistic rationale for the sustained benefit in RRD-HGG from immune-directed/synergistic salvage therapies. Future approaches need to be tailored to patient and tumor biology. SIGNIFICANCE: Hypermutant RRD-HGG are susceptible to checkpoint inhibitors beyond initial progression, leading to improved survival when reirradiation and synergistic immune/targeted agents are added. This is driven by their unique biological and immune properties, which evolve over time. Future research should focus on combinatorial regimens that increase patient survival while limiting immune toxicity. This article is featured in Selected Articles from This Issue, p. 201.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioma , Humanos , Antígeno CTLA-4 , Glioma/tratamiento farmacológico , Glioma/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Antineoplásicos/uso terapéutico , Inmunoterapia , Microambiente Tumoral
6.
J Neurooncol ; 161(3): 573-582, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36757527

RESUMEN

PURPOSE: The overall survival and prognostic factors for children with multiply recurrent posterior fossa ependymoma are not well understood. We aimed to assess prognostic factors associated with survival for relapsed pediatric posterior fossa ependymoma. METHODS: An institutional database was queried for children with a primary diagnosis of posterior fossa ependymoma from 2000 to 2019. Kaplan-Meier survival analysis and Cox-proportional hazard regression were used to assess the relationship between treatment factors and overall survival. RESULTS: There were 60 patients identified; molecular subtype was available for 56, of which 49 (87.5%) were PF-A and 7 (12.5%) were PF-B. Relapse occurred in 29 patients (48%) at a mean time of 24 months following primary resection. Median 50% survival was 12.3 years for all patients and 3.3 years following diagnosis of first relapsed disease. GTR was associated with significantly improved survival following primary resection (HR 0.373, 95% CI 0.14-0.96). Presence of recurrent disease was significantly associated with worse survival (p < 0.0001). At recurrent disease diagnosis, disseminated disease was a negative prognostic factor (HR 11.0 95% CI 2.7-44) while GTR at first relapse was associated with improved survival HR 0.215 (95% CI: 0.048-0.96, p = 0.044). Beyond first relapse, the impact of GTR was not significant on survival, though surgery compared to no surgery was favorable with HR 0.155 (95% CI: 0.04-0.59). CONCLUSIONS: Disseminated disease at recurrence and extent of resection for first relapsed disease were important prognostic factors. Surgery compared to no surgery was associated with improved survival for the multiply recurrent ependymoma cohort.


Asunto(s)
Neoplasias Encefálicas , Ependimoma , Niño , Humanos , Recurrencia Local de Neoplasia , Estimación de Kaplan-Meier , Ependimoma/cirugía , Ependimoma/diagnóstico , Pronóstico
9.
Nat Med ; 28(1): 125-135, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34992263

RESUMEN

Cancers arising from germline DNA mismatch repair deficiency or polymerase proofreading deficiency (MMRD and PPD) in children harbour the highest mutational and microsatellite insertion-deletion (MS-indel) burden in humans. MMRD and PPD cancers are commonly lethal due to the inherent resistance to chemo-irradiation. Although immune checkpoint inhibitors (ICIs) have failed to benefit children in previous studies, we hypothesized that hypermutation caused by MMRD and PPD will improve outcomes following ICI treatment in these patients. Using an international consortium registry study, we report on the ICI treatment of 45 progressive or recurrent tumors from 38 patients. Durable objective responses were observed in most patients, culminating in a 3 year survival of 41.4%. High mutation burden predicted response for ultra-hypermutant cancers (>100 mutations per Mb) enriched for combined MMRD + PPD, while MS-indels predicted response in MMRD tumors with lower mutation burden (10-100 mutations per Mb). Furthermore, both mechanisms were associated with increased immune infiltration even in 'immunologically cold' tumors such as gliomas, contributing to the favorable response. Pseudo-progression (flare) was common and was associated with immune activation in the tumor microenvironment and systemically. Furthermore, patients with flare who continued ICI treatment achieved durable responses. This study demonstrates improved survival for patients with tumors not previously known to respond to ICI treatment, including central nervous system and synchronous cancers, and identifies the dual roles of mutation burden and MS-indels in predicting sustained response to immunotherapy.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Reparación del ADN/genética , Replicación del ADN/genética , Mutación de Línea Germinal , Adolescente , Adulto , Biomarcadores de Tumor , Niño , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Masculino , Neoplasias/tratamiento farmacológico , Estudios Prospectivos , Estudios Retrospectivos , Análisis de Supervivencia , Microambiente Tumoral , Adulto Joven
10.
BMC Pediatr ; 22(1): 13, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34980048

RESUMEN

BACKGROUND: Treatment personalization via tumor molecular testing holds promise for improving outcomes for patients with pediatric low-grade glioma (PLGG). We evaluate the health economic impact of employing tumor molecular testing to guide treatment for patients diagnosed with PLGG, particularly the avoidance of radiation therapy (RT) for patients with BRAF-fusion. METHODS: We performed a model-based cost-utility analysis comparing two strategies: molecular testing to determine BRAF fusion status at diagnosis against no molecular testing. We developed a microsimulation to model the lifetime health and cost outcomes (in quality-adjusted life years (QALYs) and 2018 CAD, respectively) for a simulated cohort of 100,000 patients newly diagnosed with PLGG after their initial surgery. RESULTS: The life expectancy after diagnosis for individuals who did not receive molecular testing was 39.01 (95% Confidence Intervals (CI): 32.94;44.38) years and 40.08 (95% CI: 33.19;45.76) years for those who received testing. Our findings indicate that patients who received molecular testing at diagnosis experienced a 0.38 (95% CI: 0.08;0.77) gain in QALYs and $1384 (95% CI: $-3486; $1204) reduction in costs over their lifetime. Cost and QALY benefits were driven primarily by the avoidance of long-term adverse events (stroke, secondary neoplasms) associated with unnecessary use of radiation. CONCLUSIONS: We demonstrate the clinical benefit and cost-effectiveness of molecular testing in guiding the decision to provide RT in PLGG. While our results do not consider the impact of targeted therapies, this work is an example of the value of simulation modeling in assessing the long-term costs and benefits of precision oncology interventions for childhood cancer, which can aid decision-making about health system reimbursement.


Asunto(s)
Glioma , Proteínas Proto-Oncogénicas B-raf , Niño , Análisis Costo-Beneficio , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Humanos , Técnicas de Diagnóstico Molecular , Medicina de Precisión , Proteínas Proto-Oncogénicas B-raf/genética , Años de Vida Ajustados por Calidad de Vida
12.
Cancer Discov ; 11(6): 1454-1467, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33563663

RESUMEN

The RAS/MAPK pathway is an emerging targeted pathway across a spectrum of both adult and pediatric cancers. Typically, this is associated with a single, well-characterized point mutation in an oncogene. Hypermutant tumors that harbor many somatic mutations may obscure the interpretation of such targetable genomic events. We find that replication repair-deficient (RRD) cancers, which are universally hypermutant and affect children born with RRD cancer predisposition, are enriched for RAS/MAPK mutations (P = 10-8). These mutations are not random, exist in subclones, and increase in allelic frequency over time. The RAS/MAPK pathway is activated both transcriptionally and at the protein level in patient-derived RRD tumors, and these tumors responded to MEK inhibition in vitro and in vivo. Treatment of patients with RAS/MAPK hypermutant gliomas reveals durable responses to MEK inhibition. Our observations suggest that hypermutant tumors may be addicted to oncogenic pathways, resulting in favorable response to targeted therapies. SIGNIFICANCE: Tumors harboring a single RAS/MAPK driver mutation are targeted individually for therapeutic purposes. We find that in RRD hypermutant cancers, mutations in the RAS/MAPK pathway are enriched, highly expressed, and result in sensitivity to MEK inhibitors. Targeting an oncogenic pathway may provide therapeutic options for these hypermutant polyclonal cancers.This article is highlighted in the In This Issue feature, p. 1307.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Predisposición Genética a la Enfermedad , Glioma/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Adulto , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Niño , Neoplasias Colorrectales/genética , Femenino , Glioma/genética , Salud Global , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Mutación
14.
Neurooncol Adv ; 2(1): vdaa103, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33063010

RESUMEN

BACKGROUND: The mitogen-activated protein kinases/extracelluar signal-regulated kinases pathway is involved in cell growth and proliferation, and mutations in BRAF have made it an oncogene of interest in pediatric cancer. Previous studies found that BRAF mutations as well as KIAA1549-BRAF fusions are common in intracranial low-grade gliomas (LGGs). Fewer studies have tested for the presence of these genetic changes in spinal LGGs. The aim of this study was to better understand the prevalence of BRAF and other genetic aberrations in spinal LGG. METHODS: We retrospectively analyzed 46 spinal gliomas from patients aged 1-25 years from Children's Hospital Colorado (CHCO) and The Hospital for Sick Children (SickKids). CHCO utilized a 67-gene panel that assessed BRAF and additionally screened for other possible genetic abnormalities of interest. At SickKids, BRAF V600E was assessed by droplet digital polymerase chain reaction and immunohistochemistry. BRAF fusions were detected by fluorescence in situ hybridization, reverse transcription polymerase chain reaction, or NanoString platform. Data were correlated with clinical information. RESULTS: Of 31 samples with complete fusion analysis, 13 (42%) harbored KIAA1549-BRAF. All 13 (100%) patients with confirmed KIAA1549-BRAF survived the entirety of the study period (median [interquartile range] follow-up time: 47 months [27-85 months]) and 15 (83.3%) fusion-negative patients survived (follow-up time: 37.5 months [19.8-69.5 months]). Other mutations of interest were also identified in this patient cohort including BRAF V600E , PTPN11, H3F3A, TP53, FGFR1, and CDKN2A deletion. CONCLUSION: KIAA1549-BRAF was seen in higher frequency than BRAF V600E or other genetic aberrations in pediatric spinal LGGs and experienced lower death rates compared to KIAA1549-BRAF negative patients, although this was not statistically significant.

15.
Pediatr Blood Cancer ; 67(12): e28627, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32959992

RESUMEN

Central nervous system high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1) is a rare recently described entity. Fourteen CNS HGNET-MN1 patients were identified using genome-wide methylation arrays/RT-PCR across seven institutions. All patients had surgery (gross total resection: 10; subtotal resection: four) as initial management followed by observation alone in three patients, followed by radiotherapy in eight patients (focal: five; craniospinal: two; CyberKnife: one) and systemic chemotherapy in three patients. Seven patients relapsed; five local and two metastatic, despite adjuvant radiotherapy, of which three died. Treatment of CNS HGNET-MN1 remains a major treatment challenge despite aggressive surgical resections and upfront radiotherapy, warranting new approaches to this rare malignancy.


Asunto(s)
Neoplasias del Sistema Nervioso Central/patología , Mutación , Neoplasias Neuroepiteliales/patología , Transactivadores/genética , Proteínas Supresoras de Tumor/genética , Adolescente , Adulto , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/terapia , Niño , Preescolar , Terapia Combinada , Femenino , Estudios de Seguimiento , Humanos , Masculino , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/terapia , Pronóstico , Estudios Retrospectivos , Adulto Joven
16.
Artículo en Inglés | MEDLINE | ID: mdl-32923898

RESUMEN

PURPOSE: Children with pediatric gliomas harboring a BRAF V600E mutation have poor outcomes with current chemoradiotherapy strategies. Our aim was to study the role of targeted BRAF inhibition in these tumors. PATIENTS AND METHODS: We collected clinical, imaging, molecular, and outcome information from patients with BRAF V600E-mutated glioma treated with BRAF inhibition across 29 centers from multiple countries. RESULTS: Sixty-seven patients were treated with BRAF inhibition (pediatric low-grade gliomas [PLGGs], n = 56; pediatric high-grade gliomas [PHGGs], n = 11) for up to 5.6 years. Objective responses were observed in 80% of PLGGs, compared with 28% observed with conventional chemotherapy (P < .001). These responses were rapid (median, 4 months) and sustained in 86% of tumors up to 5 years while receiving therapy. After discontinuation of BRAF inhibition, 76.5% (13 of 17) of patients with PLGG experienced rapid progression (median, 2.3 months). However, upon rechallenge with BRAF inhibition, 90% achieved an objective response. Poor prognostic factors in conventional therapies, such as concomitant homozygous deletion of CDKN2A, were not associated with lack of response to BRAF inhibition. In contrast, only 36% of those with PHGG responded to BRAF inhibition, with all but one tumor progressing within 18 months. In PLGG, responses translated to 3-year progression-free survival of 49.6% (95% CI, 35.3% to 69.5%) versus 29.8% (95% CI, 20% to 44.4%) for BRAF inhibition versus chemotherapy, respectively (P = .02). CONCLUSION: Use of BRAF inhibition results in robust and durable responses in BRAF V600E-mutated PLGG. Prospective studies are required to determine long-term survival and functional outcomes with BRAF inhibitor therapy in childhood gliomas.

17.
Cell Rep Med ; 1(3)2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32743560

RESUMEN

Over the past decade, wingless-activated (WNT) medulloblastoma has been identified as a candidate for therapy de-escalation based on excellent survival; however, a paucity of relapses has precluded additional analyses of markers of relapse. To address this gap in knowledge, an international cohort of 93 molecularly confirmed WNT MB was assembled, where 5-year progression-free survival is 0.84 (95%, 0.763-0.925) with 15 relapsed individuals identified. Maintenance chemotherapy is identified as a strong predictor of relapse, with individuals receiving high doses of cyclophosphamide or ifosphamide having only one very late molecularly confirmed relapse (p = 0.032). The anatomical location of recurrence is metastatic in 12 of 15 relapses, with 8 of 12 metastatic relapses in the lateral ventricles. Maintenance chemotherapy, specifically cumulative cyclophosphamide doses, is a significant predictor of relapse across WNT MB. Future efforts to de-escalate therapy need to carefully consider not only the radiation dose but also the chemotherapy regimen and the propensity for metastatic relapses.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Cerebelosas/tratamiento farmacológico , Meduloblastoma/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Adolescente , Biomarcadores de Tumor/metabolismo , Niño , Ciclofosfamida/uso terapéutico , Femenino , Humanos , Ifosfamida/uso terapéutico , Masculino , Meduloblastoma/metabolismo , Persona de Mediana Edad , Recurrencia Local de Neoplasia/metabolismo , Supervivencia sin Progresión
18.
Neuro Oncol ; 22(10): 1474-1483, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32242226

RESUMEN

BACKGROUND: Both genetic and methylation analysis have been shown to provide insight into the diagnosis and prognosis of many brain tumors. However, the implication of methylation profiling and its interaction with genetic alterations in pediatric low-grade gliomas (PLGGs) are unclear. METHODS: We performed a comprehensive analysis of PLGG with long-term clinical follow-up. In total 152 PLGGs were analyzed from a range of pathological subtypes, including 40 gangliogliomas. Complete molecular analysis was compared with genome-wide methylation data and outcome in all patients. For further analysis of specific PLGG groups, including BRAF p.V600E mutant gliomas, we compiled an additional cohort of clinically and genetically defined tumors from 3 large centers. RESULTS: Unsupervised hierarchical clustering revealed 5 novel subgroups of PLGG. These were dominated by nonneoplastic factors such as tumor location and lymphocytic infiltration. Midline PLGG clustered together while deep hemispheric lesions differed from lesions in the periphery. Mutations were distributed throughout these location-driven clusters of PLGG. A novel methylation cluster suggesting high lymphocyte infiltration was confirmed pathologically and exhibited worse progression-free survival compared with PLGG harboring similar molecular alterations (P = 0.008; multivariate analysis: P = 0.035). Although the current methylation classifier revealed low confidence in 44% of cases and failed to add information in most PLGG, it was helpful in reclassifying rare cases. The addition of histopathological and molecular information to specific methylation subgroups such as pleomorphic xanthoastrocytoma-like tumors could stratify these tumors into low and high risk (P = 0.0014). CONCLUSION: The PLGG methylome is affected by multiple nonneoplastic factors. Combined molecular and pathological analysis is key to provide additional information when methylation classification is used for PLGG in the clinical setting.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/genética , Niño , Epigénesis Genética , Epigenómica , Glioma/genética , Humanos , Mutación
19.
Cancer Cell ; 37(4): 569-583.e5, 2020 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-32289278

RESUMEN

Pediatric low-grade gliomas (pLGG) are frequently driven by genetic alterations in the RAS-mitogen-activated protein kinase (RAS/MAPK) pathway yet show unexplained variability in their clinical outcome. To address this, we characterized a cohort of >1,000 clinically annotated pLGG. Eighty-four percent of cases harbored a driver alteration, while those without an identified alteration also often exhibited upregulation of the RAS/MAPK pathway. pLGG could be broadly classified based on their alteration type. Rearrangement-driven tumors were diagnosed at a younger age, enriched for WHO grade I histology, infrequently progressed, and rarely resulted in death as compared with SNV-driven tumors. Further sub-classification of clinical-molecular correlates stratified pLGG into risk categories. These data highlight the biological and clinical differences between pLGG subtypes and opens avenues for future treatment refinement.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Variaciones en el Número de Copia de ADN , Regulación Neoplásica de la Expresión Génica , Reordenamiento Génico , Glioma/genética , Mutación , Adolescente , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/patología , Niño , Preescolar , Estudios de Cohortes , Femenino , Perfilación de la Expresión Génica , Glioma/clasificación , Glioma/patología , Humanos , Lactante , Recién Nacido , Masculino , Proteínas Quinasas Activadas por Mitógenos/genética , Neurofibromina 1/genética , Proteínas de Fusión Oncogénica/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas ras/genética
20.
J Neuropathol Exp Neurol ; 79(4): 437-447, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32053195

RESUMEN

The diagnosis of medulloblastoma incorporates the histologic and molecular subclassification of clinical medulloblastoma samples into wingless (WNT)-activated, sonic hedgehog (SHH)-activated, group 3 and group 4 subgroups. Accurate medulloblastoma subclassification has important prognostic and treatment implications. Immunohistochemistry (IHC)-based and nanoString-based subgrouping methodologies have been independently described as options for medulloblastoma subgrouping, however have not previously been directly compared. We describe our experience with nanoString-based subgrouping in a clinical setting and compare this with our IHC-based results. Study materials included FFPE tissue from 160 medulloblastomas. Clinical data and tumor histology were reviewed. Immunohistochemical-based subgrouping using ß-catenin, filamin A and p53 antibodies and nanoString-based gene expression profiling were performed. The sensitivity and specificity of IHC-based subgrouping of WNT and SHH-activated medulloblastomas was 91.5% and 99.54%, respectively. Filamin A immunopositivity highly correlated with SHH/WNT-activated subgroups (sensitivity 100%, specificity 92.7%, p < 0.001). Nuclear ß-catenin immunopositivity had a sensitivity of 76.2% and specificity of 99.23% for detection of WNT-activated tumors. Approximately 23.8% of WNT cases would have been missed using an IHC-based subgrouping method alone. nanoString could confidently predict medulloblastoma subgroup in 93% of cases and could distinguish group 3/4 subgroups in 96.3% of cases. nanoString-based subgrouping allows for a more prognostically useful classification of clinical medulloblastoma samples.


Asunto(s)
Neoplasias Cerebelosas/diagnóstico , Perfilación de la Expresión Génica/métodos , Proteínas Hedgehog/genética , Inmunohistoquímica , Meduloblastoma/diagnóstico , Proteínas Wnt/genética , Adolescente , Adulto , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Niño , Preescolar , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Lactante , Estimación de Kaplan-Meier , Masculino , Meduloblastoma/genética , Meduloblastoma/patología , Persona de Mediana Edad , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...